Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation

نویسندگان

  • Cheng Sun
  • Jianping Li
  • Sen Zhao
چکیده

The time series of 20th century Siberian warm season (May to October) precipitation (SWP) shows variations over decadal timescales, including a wetting trend since the 1970s. Here, it is shown that the Atlantic multidecadal variability (AMV) can be implicated as a remote driver of the decadal-scale variations in SWP. Observational analysis identifies a significant in-phase relationship between the AMV and SWP, and the SWP decadal variability can be largely explained by the AMV. The physical mechanism for this relationship is investigated using both observations and numerical simulations. The results suggest that North Atlantic sea surface temperature (SST) warming associated with the positive AMV phase can excite an eastward propagating wave train response across the entire Eurasian continent, which includes an east-west dipole structure over Siberia. The dipole then leads to anomalous southerly winds bringing moisture northward to Siberia; the precipitation increases correspondingly. The mechanism is further supported by linear barotropic modeling and Rossby wave ray tracing analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidecadal North Atlantic Climate Variability and Its Effect on North American Salmon Abundance

[1] Climate variability is now known to play a key role in the abundance of marine fisheries, and must be accounted for to implement sustainable management strategies. We show that North American Atlantic salmon abundance has fluctuated in parallel with the Atlantic Multidecadal Oscillation (AMO); a basin-wide, low frequency climate mode producing cold-warm-cold sea surface temperatures over th...

متن کامل

Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments succes...

متن کامل

The Influence of El Niño–Southern Oscillation and the Atlantic Multidecadal Oscillation on Caribbean Tropical Cyclone Activity

Caribbean basin tropical cyclone activity shows significant variability on interannual as well as multidecadal time scales. Comprehensive statistics for Caribbean hurricane activity are tabulated, and then large-scale climate features are examined for their impacts on this activity. The primary interannual driver of variability is found to be El Niño–Southern Oscillation, which alters levels of...

متن کامل

تأثیر نوسان‌های دمای سطح آب دریای خزر بر بارش فصول زمستان و بهار نواحی شمالی و جنوب غربی ایران

The influence of the Sea Surface Temperatures (SSTs) on the seasonal precipitation over northern and southwestern parts of Iran was investigated. The warm, cold and base phases of the SSTs were defined and the median of precipitation during each of these phases (Rw, Rc and Rb, respectively) was determined. The magnitude of Rw/Rb, Rc/Rb and Rc/Rw were used as criteria for the assessment of the e...

متن کامل

تأثیر نوسان‌های دمای سطح آب دریای خزر بر بارش فصول زمستان و بهار نواحی شمالی و جنوب غربی ایران

The influence of the Sea Surface Temperatures (SSTs) on the seasonal precipitation over northern and southwestern parts of Iran was investigated. The warm, cold and base phases of the SSTs were defined and the median of precipitation during each of these phases (Rw, Rc and Rb, respectively) was determined. The magnitude of Rw/Rb, Rc/Rb and Rc/Rw were used as criteria for the assessment of the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015